Rap 原分销系统代码Web
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

669949d1d34add1b8eb7491fd9f9f59ea0669919.svn-base 28KB

пре 5 месеци
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438
  1. <template>
  2. <div :class="className" :style="{height:height,width:width}" />
  3. </template>
  4. <script>
  5. import echarts from 'echarts'
  6. require('echarts/theme/macarons') // echarts theme
  7. import { debounce } from '@/utils'
  8. export default {
  9. props: {
  10. className: {
  11. type: String,
  12. default: 'chart'
  13. },
  14. width: {
  15. type: String,
  16. default: '100%'
  17. },
  18. height: {
  19. type: String,
  20. default: '500px'
  21. }
  22. },
  23. data() {
  24. return {
  25. chart: null
  26. }
  27. },
  28. mounted() {
  29. this.initChart()
  30. this.__resizeHandler = debounce(() => {
  31. if (this.chart) {
  32. this.chart.resize()
  33. }
  34. }, 100)
  35. window.addEventListener('resize', this.__resizeHandler)
  36. },
  37. beforeDestroy() {
  38. if (!this.chart) {
  39. return
  40. }
  41. window.removeEventListener('resize', this.__resizeHandler)
  42. this.chart.dispose()
  43. this.chart = null
  44. },
  45. methods: {
  46. initChart() {
  47. this.chart = echarts.init(this.$el, 'macarons')
  48. const dataMap = {}
  49. function dataFormatter(obj) {
  50. const pList = ['北京', '天津', '河北', '山西', '内蒙古', '辽宁', '吉林', '黑龙江', '上海', '江苏', '浙江', '安徽', '福建', '江西', '山东', '河南', '湖北', '湖南', '广东', '广西', '海南', '重庆', '四川', '贵州', '云南', '西藏', '陕西', '甘肃', '青海', '宁夏', '新疆']
  51. let temp
  52. for (let year = 2002; year <= 2011; year++) {
  53. let max = 0
  54. let sum = 0
  55. temp = obj[year]
  56. for (let i = 0, l = temp.length; i < l; i++) {
  57. max = Math.max(max, temp[i])
  58. sum += temp[i]
  59. obj[year][i] = {
  60. name: pList[i],
  61. value: temp[i]
  62. }
  63. }
  64. obj[year + 'max'] = Math.floor(max / 100) * 100
  65. obj[year + 'sum'] = sum
  66. }
  67. return obj
  68. }
  69. dataMap.dataGDP = dataFormatter({
  70. 2011: [16251.93, 11307.28, 24515.76, 11237.55, 14359.88, 22226.7, 10568.83, 12582, 19195.69, 49110.27, 32318.85, 15300.65, 17560.18, 11702.82, 45361.85, 26931.03, 19632.26, 19669.56, 53210.28, 11720.87, 2522.66, 10011.37, 21026.68, 5701.84, 8893.12, 605.83, 12512.3, 5020.37, 1670.44, 2102.21, 6610.05],
  71. 2010: [14113.58, 9224.46, 20394.26, 9200.86, 11672, 18457.27, 8667.58, 10368.6, 17165.98, 41425.48, 27722.31, 12359.33, 14737.12, 9451.26, 39169.92, 23092.36, 15967.61, 16037.96, 46013.06, 9569.85, 2064.5, 7925.58, 17185.48, 4602.16, 7224.18, 507.46, 10123.48, 4120.75, 1350.43, 1689.65, 5437.47],
  72. 2009: [12153.03, 7521.85, 17235.48, 7358.31, 9740.25, 15212.49, 7278.75, 8587, 15046.45, 34457.3, 22990.35, 10062.82, 12236.53, 7655.18, 33896.65, 19480.46, 12961.1, 13059.69, 39482.56, 7759.16, 1654.21, 6530.01, 14151.28, 3912.68, 6169.75, 441.36, 8169.8, 3387.56, 1081.27, 1353.31, 4277.05],
  73. 2008: [11115, 6719.01, 16011.97, 7315.4, 8496.2, 13668.58, 6426.1, 8314.37, 14069.87, 30981.98, 21462.69, 8851.66, 10823.01, 6971.05, 30933.28, 18018.53, 11328.92, 11555, 36796.71, 7021, 1503.06, 5793.66, 12601.23, 3561.56, 5692.12, 394.85, 7314.58, 3166.82, 1018.62, 1203.92, 4183.21],
  74. 2007: [9846.81, 5252.76, 13607.32, 6024.45, 6423.18, 11164.3, 5284.69, 7104, 12494.01, 26018.48, 18753.73, 7360.92, 9248.53, 5800.25, 25776.91, 15012.46, 9333.4, 9439.6, 31777.01, 5823.41, 1254.17, 4676.13, 10562.39, 2884.11, 4772.52, 341.43, 5757.29, 2703.98, 797.35, 919.11, 3523.16],
  75. 2006: [8117.78, 4462.74, 11467.6, 4878.61, 4944.25, 9304.52, 4275.12, 6211.8, 10572.24, 21742.05, 15718.47, 6112.5, 7583.85, 4820.53, 21900.19, 12362.79, 7617.47, 7688.67, 26587.76, 4746.16, 1065.67, 3907.23, 8690.24, 2338.98, 3988.14, 290.76, 4743.61, 2277.35, 648.5, 725.9, 3045.26],
  76. 2005: [6969.52, 3905.64, 10012.11, 4230.53, 3905.03, 8047.26, 3620.27, 5513.7, 9247.66, 18598.69, 13417.68, 5350.17, 6554.69, 4056.76, 18366.87, 10587.42, 6590.19, 6596.1, 22557.37, 3984.1, 918.75, 3467.72, 7385.1, 2005.42, 3462.73, 248.8, 3933.72, 1933.98, 543.32, 612.61, 2604.19],
  77. 2004: [6033.21, 3110.97, 8477.63, 3571.37, 3041.07, 6672, 3122.01, 4750.6, 8072.83, 15003.6, 11648.7, 4759.3, 5763.35, 3456.7, 15021.84, 8553.79, 5633.24, 5641.94, 18864.62, 3433.5, 819.66, 3034.58, 6379.63, 1677.8, 3081.91, 220.34, 3175.58, 1688.49, 466.1, 537.11, 2209.09],
  78. 2003: [5007.21, 2578.03, 6921.29, 2855.23, 2388.38, 6002.54, 2662.08, 4057.4, 6694.23, 12442.87, 9705.02, 3923.11, 4983.67, 2807.41, 12078.15, 6867.7, 4757.45, 4659.99, 15844.64, 2821.11, 713.96, 2555.72, 5333.09, 1426.34, 2556.02, 185.09, 2587.72, 1399.83, 390.2, 445.36, 1886.35],
  79. 2002: [4315, 2150.76, 6018.28, 2324.8, 1940.94, 5458.22, 2348.54, 3637.2, 5741.03, 10606.85, 8003.67, 3519.72, 4467.55, 2450.48, 10275.5, 6035.48, 4212.82, 4151.54, 13502.42, 2523.73, 642.73, 2232.86, 4725.01, 1243.43, 2312.82, 162.04, 2253.39, 1232.03, 340.65, 377.16, 1612.6]
  80. })
  81. dataMap.dataPI = dataFormatter({
  82. 2011: [136.27, 159.72, 2905.73, 641.42, 1306.3, 1915.57, 1277.44, 1701.5, 124.94, 3064.78, 1583.04, 2015.31, 1612.24, 1391.07, 3973.85, 3512.24, 2569.3, 2768.03, 2665.2, 2047.23, 659.23, 844.52, 2983.51, 726.22, 1411.01, 74.47, 1220.9, 678.75, 155.08, 184.14, 1139.03],
  83. 2010: [124.36, 145.58, 2562.81, 554.48, 1095.28, 1631.08, 1050.15, 1302.9, 114.15, 2540.1, 1360.56, 1729.02, 1363.67, 1206.98, 3588.28, 3258.09, 2147, 2325.5, 2286.98, 1675.06, 539.83, 685.38, 2482.89, 625.03, 1108.38, 68.72, 988.45, 599.28, 134.92, 159.29, 1078.63],
  84. 2009: [118.29, 128.85, 2207.34, 477.59, 929.6, 1414.9, 980.57, 1154.33, 113.82, 2261.86, 1163.08, 1495.45, 1182.74, 1098.66, 3226.64, 2769.05, 1795.9, 1969.69, 2010.27, 1458.49, 462.19, 606.8, 2240.61, 550.27, 1067.6, 63.88, 789.64, 497.05, 107.4, 127.25, 759.74],
  85. 2008: [112.83, 122.58, 2034.59, 313.58, 907.95, 1302.02, 916.72, 1088.94, 111.8, 2100.11, 1095.96, 1418.09, 1158.17, 1060.38, 3002.65, 2658.78, 1780, 1892.4, 1973.05, 1453.75, 436.04, 575.4, 2216.15, 539.19, 1020.56, 60.62, 753.72, 462.27, 105.57, 118.94, 691.07],
  86. 2007: [101.26, 110.19, 1804.72, 311.97, 762.1, 1133.42, 783.8, 915.38, 101.84, 1816.31, 986.02, 1200.18, 1002.11, 905.77, 2509.14, 2217.66, 1378, 1626.48, 1695.57, 1241.35, 361.07, 482.39, 2032, 446.38, 837.35, 54.89, 592.63, 387.55, 83.41, 97.89, 628.72],
  87. 2006: [88.8, 103.35, 1461.81, 276.77, 634.94, 939.43, 672.76, 750.14, 93.81, 1545.05, 925.1, 1011.03, 865.98, 786.14, 2138.9, 1916.74, 1140.41, 1272.2, 1532.17, 1032.47, 323.48, 386.38, 1595.48, 382.06, 724.4, 50.9, 484.81, 334, 67.55, 79.54, 527.8],
  88. 2005: [88.68, 112.38, 1400, 262.42, 589.56, 882.41, 625.61, 684.6, 90.26, 1461.51, 892.83, 966.5, 827.36, 727.37, 1963.51, 1892.01, 1082.13, 1100.65, 1428.27, 912.5, 300.75, 463.4, 1481.14, 368.94, 661.69, 48.04, 435.77, 308.06, 65.34, 72.07, 509.99],
  89. 2004: [87.36, 105.28, 1370.43, 276.3, 522.8, 798.43, 568.69, 605.79, 83.45, 1367.58, 814.1, 950.5, 786.84, 664.5, 1778.45, 1649.29, 1020.09, 1022.45, 1248.59, 817.88, 278.76, 428.05, 1379.93, 334.5, 607.75, 44.3, 387.88, 286.78, 60.7, 65.33, 461.26],
  90. 2003: [84.11, 89.91, 1064.05, 215.19, 420.1, 615.8, 488.23, 504.8, 81.02, 1162.45, 717.85, 749.4, 692.94, 560, 1480.67, 1198.7, 798.35, 886.47, 1072.91, 658.78, 244.29, 339.06, 1128.61, 298.69, 494.6, 40.7, 302.66, 237.91, 48.47, 55.63, 412.9],
  91. 2002: [82.44, 84.21, 956.84, 197.8, 374.69, 590.2, 446.17, 474.2, 79.68, 1110.44, 685.2, 783.66, 664.78, 535.98, 1390, 1288.36, 707, 847.25, 1015.08, 601.99, 222.89, 317.87, 1047.95, 281.1, 463.44, 39.75, 282.21, 215.51, 47.31, 52.95, 305]
  92. })
  93. dataMap.dataSI = dataFormatter({
  94. 2011: [3752.48, 5928.32, 13126.86, 6635.26, 8037.69, 12152.15, 5611.48, 5962.41, 7927.89, 25203.28, 16555.58, 8309.38, 9069.2, 6390.55, 24017.11, 15427.08, 9815.94, 9361.99, 26447.38, 5675.32, 714.5, 5543.04, 11029.13, 2194.33, 3780.32, 208.79, 6935.59, 2377.83, 975.18, 1056.15, 3225.9],
  95. 2010: [3388.38, 4840.23, 10707.68, 5234, 6367.69, 9976.82, 4506.31, 5025.15, 7218.32, 21753.93, 14297.93, 6436.62, 7522.83, 5122.88, 21238.49, 13226.38, 7767.24, 7343.19, 23014.53, 4511.68, 571, 4359.12, 8672.18, 1800.06, 3223.49, 163.92, 5446.1, 1984.97, 744.63, 827.91, 2592.15],
  96. 2009: [2855.55, 3987.84, 8959.83, 3993.8, 5114, 7906.34, 3541.92, 4060.72, 6001.78, 18566.37, 11908.49, 4905.22, 6005.3, 3919.45, 18901.83, 11010.5, 6038.08, 5687.19, 19419.7, 3381.54, 443.43, 3448.77, 6711.87, 1476.62, 2582.53, 136.63, 4236.42, 1527.24, 575.33, 662.32, 1929.59],
  97. 2008: [2626.41, 3709.78, 8701.34, 4242.36, 4376.19, 7158.84, 3097.12, 4319.75, 6085.84, 16993.34, 11567.42, 4198.93, 5318.44, 3554.81, 17571.98, 10259.99, 5082.07, 5028.93, 18502.2, 3037.74, 423.55, 3057.78, 5823.39, 1370.03, 2452.75, 115.56, 3861.12, 1470.34, 557.12, 609.98, 2070.76],
  98. 2007: [2509.4, 2892.53, 7201.88, 3454.49, 3193.67, 5544.14, 2475.45, 3695.58, 5571.06, 14471.26, 10154.25, 3370.96, 4476.42, 2975.53, 14647.53, 8282.83, 4143.06, 3977.72, 16004.61, 2425.29, 364.26, 2368.53, 4648.79, 1124.79, 2038.39, 98.48, 2986.46, 1279.32, 419.03, 455.04, 1647.55],
  99. 2006: [2191.43, 2457.08, 6110.43, 2755.66, 2374.96, 4566.83, 1915.29, 3365.31, 4969.95, 12282.89, 8511.51, 2711.18, 3695.04, 2419.74, 12574.03, 6724.61, 3365.08, 3187.05, 13469.77, 1878.56, 308.62, 1871.65, 3775.14, 967.54, 1705.83, 80.1, 2452.44, 1043.19, 331.91, 351.58, 1459.3],
  100. 2005: [2026.51, 2135.07, 5271.57, 2357.04, 1773.21, 3869.4, 1580.83, 2971.68, 4381.2, 10524.96, 7164.75, 2245.9, 3175.92, 1917.47, 10478.62, 5514.14, 2852.12, 2612.57, 11356.6, 1510.68, 240.83, 1564, 3067.23, 821.16, 1426.42, 63.52, 1951.36, 838.56, 264.61, 281.05, 1164.79],
  101. 2004: [1853.58, 1685.93, 4301.73, 1919.4, 1248.27, 3061.62, 1329.68, 2487.04, 3892.12, 8437.99, 6250.38, 1844.9, 2770.49, 1566.4, 8478.69, 4182.1, 2320.6, 2190.54, 9280.73, 1253.7, 205.6, 1376.91, 2489.4, 681.5, 1281.63, 52.74, 1553.1, 713.3, 211.7, 244.05, 914.47],
  102. 2003: [1487.15, 1337.31, 3417.56, 1463.38, 967.49, 2898.89, 1098.37, 2084.7, 3209.02, 6787.11, 5096.38, 1535.29, 2340.82, 1204.33, 6485.05, 3310.14, 1956.02, 1777.74, 7592.78, 984.08, 175.82, 1135.31, 2014.8, 569.37, 1047.66, 47.64, 1221.17, 572.02, 171.92, 194.27, 719.54],
  103. 2002: [1249.99, 1069.08, 2911.69, 1134.31, 754.78, 2609.85, 943.49, 1843.6, 2622.45, 5604.49, 4090.48, 1337.04, 2036.97, 941.77, 5184.98, 2768.75, 1709.89, 1523.5, 6143.4, 846.89, 148.88, 958.87, 1733.38, 481.96, 934.88, 32.72, 1007.56, 501.69, 144.51, 153.06, 603.15]
  104. })
  105. dataMap.dataTI = dataFormatter({
  106. 2011: [12363.18, 5219.24, 8483.17, 3960.87, 5015.89, 8158.98, 3679.91, 4918.09, 11142.86, 20842.21, 14180.23, 4975.96, 6878.74, 3921.2, 17370.89, 7991.72, 7247.02, 7539.54, 24097.7, 3998.33, 1148.93, 3623.81, 7014.04, 2781.29, 3701.79, 322.57, 4355.81, 1963.79, 540.18, 861.92, 2245.12],
  107. 2010: [10600.84, 4238.65, 7123.77, 3412.38, 4209.03, 6849.37, 3111.12, 4040.55, 9833.51, 17131.45, 12063.82, 4193.69, 5850.62, 3121.4, 14343.14, 6607.89, 6053.37, 6369.27, 20711.55, 3383.11, 953.67, 2881.08, 6030.41, 2177.07, 2892.31, 274.82, 3688.93, 1536.5, 470.88, 702.45, 1766.69],
  108. 2009: [9179.19, 3405.16, 6068.31, 2886.92, 3696.65, 5891.25, 2756.26, 3371.95, 8930.85, 13629.07, 9918.78, 3662.15, 5048.49, 2637.07, 11768.18, 5700.91, 5127.12, 5402.81, 18052.59, 2919.13, 748.59, 2474.44, 5198.8, 1885.79, 2519.62, 240.85, 3143.74, 1363.27, 398.54, 563.74, 1587.72],
  109. 2008: [8375.76, 2886.65, 5276.04, 2759.46, 3212.06, 5207.72, 2412.26, 2905.68, 7872.23, 11888.53, 8799.31, 3234.64, 4346.4, 2355.86, 10358.64, 5099.76, 4466.85, 4633.67, 16321.46, 2529.51, 643.47, 2160.48, 4561.69, 1652.34, 2218.81, 218.67, 2699.74, 1234.21, 355.93, 475, 1421.38],
  110. 2007: [7236.15, 2250.04, 4600.72, 2257.99, 2467.41, 4486.74, 2025.44, 2493.04, 6821.11, 9730.91, 7613.46, 2789.78, 3770, 1918.95, 8620.24, 4511.97, 3812.34, 3835.4, 14076.83, 2156.76, 528.84, 1825.21, 3881.6, 1312.94, 1896.78, 188.06, 2178.2, 1037.11, 294.91, 366.18, 1246.89],
  111. 2006: [5837.55, 1902.31, 3895.36, 1846.18, 1934.35, 3798.26, 1687.07, 2096.35, 5508.48, 7914.11, 6281.86, 2390.29, 3022.83, 1614.65, 7187.26, 3721.44, 3111.98, 3229.42, 11585.82, 1835.12, 433.57, 1649.2, 3319.62, 989.38, 1557.91, 159.76, 1806.36, 900.16, 249.04, 294.78, 1058.16],
  112. 2005: [4854.33, 1658.19, 3340.54, 1611.07, 1542.26, 3295.45, 1413.83, 1857.42, 4776.2, 6612.22, 5360.1, 2137.77, 2551.41, 1411.92, 5924.74, 3181.27, 2655.94, 2882.88, 9772.5, 1560.92, 377.17, 1440.32, 2836.73, 815.32, 1374.62, 137.24, 1546.59, 787.36, 213.37, 259.49, 929.41],
  113. 2004: [4092.27, 1319.76, 2805.47, 1375.67, 1270, 2811.95, 1223.64, 1657.77, 4097.26, 5198.03, 4584.22, 1963.9, 2206.02, 1225.8, 4764.7, 2722.4, 2292.55, 2428.95, 8335.3, 1361.92, 335.3, 1229.62, 2510.3, 661.8, 1192.53, 123.3, 1234.6, 688.41, 193.7, 227.73, 833.36],
  114. 2003: [3435.95, 1150.81, 2439.68, 1176.65, 1000.79, 2487.85, 1075.48, 1467.9, 3404.19, 4493.31, 3890.79, 1638.42, 1949.91, 1043.08, 4112.43, 2358.86, 2003.08, 1995.78, 7178.94, 1178.25, 293.85, 1081.35, 2189.68, 558.28, 1013.76, 96.76, 1063.89, 589.91, 169.81, 195.46, 753.91],
  115. 2002: [2982.57, 997.47, 2149.75, 992.69, 811.47, 2258.17, 958.88, 1319.4, 3038.9, 3891.92, 3227.99, 1399.02, 1765.8, 972.73, 3700.52, 1978.37, 1795.93, 1780.79, 6343.94, 1074.85, 270.96, 956.12, 1943.68, 480.37, 914.5, 89.56, 963.62, 514.83, 148.83, 171.14, 704.5]
  116. })
  117. dataMap.dataEstate = dataFormatter({
  118. 2011: [1074.93, 411.46, 918.02, 224.91, 384.76, 876.12, 238.61, 492.1, 1019.68, 2747.89, 1677.13, 634.92, 911.16, 402.51, 1838.14, 987, 634.67, 518.04, 3321.31, 465.68, 208.71, 396.28, 620.62, 160.3, 222.31, 17.44, 398.03, 134.25, 29.05, 79.01, 176.22],
  119. 2010: [1006.52, 377.59, 697.79, 192, 309.25, 733.37, 212.32, 391.89, 1002.5, 2600.95, 1618.17, 532.17, 679.03, 340.56, 1622.15, 773.23, 564.41, 464.21, 2813.95, 405.79, 188.33, 266.38, 558.56, 139.64, 223.45, 14.54, 315.95, 110.02, 25.41, 60.53, 143.44],
  120. 2009: [1062.47, 308.73, 612.4, 173.31, 286.65, 605.27, 200.14, 301.18, 1237.56, 2025.39, 1316.84, 497.94, 656.61, 305.9, 1329.59, 622.98, 546.11, 400.11, 2470.63, 348.98, 121.76, 229.09, 548.14, 136.15, 205.14, 13.28, 239.92, 101.37, 23.05, 47.56, 115.23],
  121. 2008: [844.59, 227.88, 513.81, 166.04, 273.3, 500.81, 182.7, 244.47, 939.34, 1626.13, 1052.03, 431.27, 506.98, 281.96, 1104.95, 512.42, 526.88, 340.07, 2057.45, 282.96, 95.6, 191.21, 453.63, 104.81, 195.48, 15.08, 193.27, 93.8, 19.96, 38.85, 89.79],
  122. 2007: [821.5, 183.44, 467.97, 134.12, 191.01, 410.43, 153.03, 225.81, 958.06, 1365.71, 981.42, 366.57, 511.5, 225.96, 953.69, 447.44, 409.65, 301.8, 2029.77, 239.45, 67.19, 196.06, 376.84, 93.19, 193.59, 13.24, 153.98, 83.52, 16.98, 29.49, 91.28],
  123. 2006: [658.3, 156.64, 397.14, 117.01, 136.5, 318.54, 131.01, 194.7, 773.61, 1017.91, 794.41, 281.98, 435.22, 184.67, 786.51, 348.7, 294.73, 254.81, 1722.07, 192.2, 44.45, 158.2, 336.2, 80.24, 165.92, 11.92, 125.2, 73.21, 15.17, 25.53, 68.9],
  124. 2005: [493.73, 122.67, 330.87, 106, 98.75, 256.77, 112.29, 163.34, 715.97, 799.73, 688.86, 231.66, 331.8, 171.88, 664.9, 298.19, 217.17, 215.63, 1430.37, 165.05, 38.2, 143.88, 286.23, 76.38, 148.69, 10.02, 108.62, 63.78, 14.1, 22.97, 55.79],
  125. 2004: [436.11, 106.14, 231.08, 95.1, 73.81, 203.1, 97.93, 137.74, 666.3, 534.17, 587.83, 188.28, 248.44, 167.2, 473.27, 236.44, 204.8, 191.5, 1103.75, 122.52, 30.64, 129.12, 264.3, 68.3, 116.54, 5.8, 95.9, 56.84, 13, 20.78, 53.55],
  126. 2003: [341.88, 92.31, 185.19, 78.73, 61.05, 188.49, 91.99, 127.2, 487.82, 447.47, 473.16, 162.63, 215.84, 138.02, 418.21, 217.58, 176.8, 186.49, 955.66, 100.93, 25.14, 113.69, 231.72, 59.86, 103.79, 4.35, 83.9, 48.09, 11.41, 16.85, 47.84],
  127. 2002: [298.02, 73.04, 140.89, 65.83, 51.48, 130.94, 76.11, 118.7, 384.86, 371.09, 360.63, 139.18, 188.09, 125.27, 371.13, 199.31, 145.17, 165.29, 808.16, 82.83, 21.45, 90.48, 210.82, 53.49, 95.68, 3.42, 77.68, 41.52, 9.74, 13.46, 43.04]
  128. })
  129. dataMap.dataFinancial = dataFormatter({
  130. 2011: [2215.41, 756.5, 746.01, 519.32, 447.46, 755.57, 207.65, 370.78, 2277.4, 2600.11, 2730.29, 503.85, 862.41, 357.44, 1640.41, 868.2, 674.57, 501.09, 2916.13, 445.37, 105.24, 704.66, 868.15, 297.27, 456.23, 31.7, 432.11, 145.05, 62.56, 134.18, 288.77],
  131. 2010: [1863.61, 572.99, 615.42, 448.3, 346.44, 639.27, 190.12, 304.59, 1950.96, 2105.92, 2326.58, 396.17, 767.58, 241.49, 1361.45, 697.68, 561.27, 463.16, 2658.76, 384.53, 78.12, 496.56, 654.7, 231.51, 375.08, 27.08, 384.75, 100.54, 54.53, 97.87, 225.2],
  132. 2009: [1603.63, 461.2, 525.67, 361.64, 291.1, 560.2, 180.83, 227.54, 1804.28, 1596.98, 1899.33, 359.6, 612.2, 165.1, 1044.9, 499.92, 479.11, 402.57, 2283.29, 336.82, 65.73, 389.97, 524.63, 194.44, 351.74, 23.17, 336.21, 88.27, 45.63, 75.54, 198.87],
  133. 2008: [1519.19, 368.1, 420.74, 290.91, 219.09, 455.07, 147.24, 177.43, 1414.21, 1298.48, 1653.45, 313.81, 497.65, 130.57, 880.28, 413.83, 393.05, 334.32, 1972.4, 249.01, 47.33, 303.01, 411.14, 151.55, 277.66, 22.42, 287.16, 72.49, 36.54, 64.8, 171.97],
  134. 2007: [1302.77, 288.17, 347.65, 218.73, 148.3, 386.34, 126.03, 155.48, 1209.08, 1054.25, 1251.43, 223.85, 385.84, 101.34, 734.9, 302.31, 337.27, 260.14, 1705.08, 190.73, 34.43, 247.46, 359.11, 122.25, 168.55, 11.51, 231.03, 61.6, 27.67, 51.05, 149.22],
  135. 2006: [982.37, 186.87, 284.04, 169.63, 108.21, 303.41, 100.75, 74.17, 825.2, 653.25, 906.37, 166.01, 243.9, 79.75, 524.94, 219.72, 174.99, 204.72, 899.91, 129.14, 16.37, 213.7, 299.5, 89.43, 143.62, 6.44, 152.25, 50.51, 23.69, 36.99, 99.25],
  136. 2005: [840.2, 147.4, 213.47, 135.07, 72.52, 232.85, 83.63, 35.03, 675.12, 492.4, 686.32, 127.05, 186.12, 69.55, 448.36, 181.74, 127.32, 162.37, 661.81, 91.93, 13.16, 185.18, 262.26, 73.67, 130.5, 7.57, 127.58, 44.73, 20.36, 32.25, 80.34],
  137. 2004: [713.79, 136.97, 209.1, 110.29, 55.89, 188.04, 77.17, 32.2, 612.45, 440.5, 523.49, 94.1, 171, 65.1, 343.37, 170.82, 118.85, 118.64, 602.68, 74, 11.56, 162.38, 236.5, 60.3, 118.4, 5.4, 90.1, 42.99, 19, 27.92, 70.3],
  138. 2003: [635.56, 112.79, 199.87, 118.48, 55.89, 145.38, 73.15, 32.2, 517.97, 392.11, 451.54, 87.45, 150.09, 64.31, 329.71, 165.11, 107.31, 99.35, 534.28, 61.59, 10.68, 147.04, 206.24, 48.01, 105.48, 4.74, 77.87, 42.31, 17.98, 24.8, 64.92],
  139. 2002: [561.91, 76.86, 179.6, 124.1, 48.39, 137.18, 75.45, 31.6, 485.25, 368.86, 347.53, 81.85, 138.28, 76.51, 310.07, 158.77, 96.95, 92.43, 454.65, 35.86, 10.08, 134.52, 183.13, 41.45, 102.39, 2.81, 67.3, 42.08, 16.75, 21.45, 52.18]
  140. })
  141. this.chart.setOption({
  142. baseOption: {
  143. timeline: {
  144. axisType: 'category',
  145. autoPlay: true,
  146. playInterval: 1000,
  147. data: [
  148. '2002-01-01', '2003-01-01', '2004-01-01',
  149. {
  150. value: '2005-01-01',
  151. tooltip: {
  152. formatter: '{b} GDP达到一个高度'
  153. },
  154. symbol: 'diamond',
  155. symbolSize: 16
  156. },
  157. '2006-01-01', '2007-01-01', '2008-01-01', '2009-01-01', '2010-01-01',
  158. {
  159. value: '2011-01-01',
  160. tooltip: {
  161. formatter: function(params) {
  162. return params.name + 'GDP达到又一个高度'
  163. }
  164. },
  165. symbol: 'diamond',
  166. symbolSize: 18
  167. }
  168. ],
  169. label: {
  170. formatter: function(s) {
  171. return (new Date(s)).getFullYear()
  172. }
  173. }
  174. },
  175. title: {
  176. subtext: '数据来自国家统计局'
  177. },
  178. tooltip: {},
  179. legend: {
  180. x: 'right',
  181. data: ['第一产业', '第二产业', '第三产业', 'GDP', '金融', '房地产'],
  182. selected: {
  183. 'GDP': false, '金融': false, '房地产': false
  184. }
  185. },
  186. calculable: true,
  187. grid: {
  188. top: 80,
  189. bottom: 100,
  190. tooltip: {
  191. trigger: 'axis',
  192. axisPointer: {
  193. type: 'shadow',
  194. label: {
  195. show: true,
  196. formatter: function(params) {
  197. return params.value.replace('\n', '')
  198. }
  199. }
  200. }
  201. }
  202. },
  203. xAxis: [
  204. {
  205. 'type': 'category',
  206. 'axisLabel': {
  207. 'interval': 0,
  208. rotate: 45
  209. },
  210. 'data': [
  211. '北京', '\n天津', '河北', '\n山西', '内蒙古', '\n辽宁', '吉林', '\n黑龙江',
  212. '上海', '\n江苏', '浙江', '\n安徽', '福建', '\n江西', '山东', '\n河南',
  213. '湖北', '\n湖南', '广东', '\n广西', '海南', '\n重庆', '四川', '\n贵州',
  214. '云南', '\n西藏', '陕西', '\n甘肃', '青海', '\n宁夏', '新疆'
  215. ],
  216. splitLine: { show: false }
  217. }
  218. ],
  219. yAxis: [
  220. {
  221. type: 'value',
  222. name: 'GDP(亿元)'
  223. }
  224. ],
  225. series: [
  226. { name: 'GDP', type: 'bar' },
  227. { name: '金融', type: 'bar' },
  228. { name: '房地产', type: 'bar' },
  229. { name: '第一产业', type: 'bar' },
  230. { name: '第二产业', type: 'bar' },
  231. { name: '第三产业', type: 'bar' },
  232. {
  233. name: 'GDP占比',
  234. type: 'pie',
  235. center: ['75%', '35%'],
  236. radius: '28%',
  237. z: 100
  238. }
  239. ]
  240. },
  241. options: [
  242. {
  243. title: { text: '2002全国宏观经济指标' },
  244. series: [
  245. { data: dataMap.dataGDP['2002'] },
  246. { data: dataMap.dataFinancial['2002'] },
  247. { data: dataMap.dataEstate['2002'] },
  248. { data: dataMap.dataPI['2002'] },
  249. { data: dataMap.dataSI['2002'] },
  250. { data: dataMap.dataTI['2002'] },
  251. {
  252. data: [
  253. { name: '第一产业', value: dataMap.dataPI['2002sum'] },
  254. { name: '第二产业', value: dataMap.dataSI['2002sum'] },
  255. { name: '第三产业', value: dataMap.dataTI['2002sum'] }
  256. ]
  257. }
  258. ]
  259. },
  260. {
  261. title: { text: '2003全国宏观经济指标' },
  262. series: [
  263. { data: dataMap.dataGDP['2003'] },
  264. { data: dataMap.dataFinancial['2003'] },
  265. { data: dataMap.dataEstate['2003'] },
  266. { data: dataMap.dataPI['2003'] },
  267. { data: dataMap.dataSI['2003'] },
  268. { data: dataMap.dataTI['2003'] },
  269. {
  270. data: [
  271. { name: '第一产业', value: dataMap.dataPI['2003sum'] },
  272. { name: '第二产业', value: dataMap.dataSI['2003sum'] },
  273. { name: '第三产业', value: dataMap.dataTI['2003sum'] }
  274. ]
  275. }
  276. ]
  277. },
  278. {
  279. title: { text: '2004全国宏观经济指标' },
  280. series: [
  281. { data: dataMap.dataGDP['2004'] },
  282. { data: dataMap.dataFinancial['2004'] },
  283. { data: dataMap.dataEstate['2004'] },
  284. { data: dataMap.dataPI['2004'] },
  285. { data: dataMap.dataSI['2004'] },
  286. { data: dataMap.dataTI['2004'] },
  287. {
  288. data: [
  289. { name: '第一产业', value: dataMap.dataPI['2004sum'] },
  290. { name: '第二产业', value: dataMap.dataSI['2004sum'] },
  291. { name: '第三产业', value: dataMap.dataTI['2004sum'] }
  292. ]
  293. }
  294. ]
  295. },
  296. {
  297. title: { text: '2005全国宏观经济指标' },
  298. series: [
  299. { data: dataMap.dataGDP['2005'] },
  300. { data: dataMap.dataFinancial['2005'] },
  301. { data: dataMap.dataEstate['2005'] },
  302. { data: dataMap.dataPI['2005'] },
  303. { data: dataMap.dataSI['2005'] },
  304. { data: dataMap.dataTI['2005'] },
  305. {
  306. data: [
  307. { name: '第一产业', value: dataMap.dataPI['2005sum'] },
  308. { name: '第二产业', value: dataMap.dataSI['2005sum'] },
  309. { name: '第三产业', value: dataMap.dataTI['2005sum'] }
  310. ]
  311. }
  312. ]
  313. },
  314. {
  315. title: { text: '2006全国宏观经济指标' },
  316. series: [
  317. { data: dataMap.dataGDP['2006'] },
  318. { data: dataMap.dataFinancial['2006'] },
  319. { data: dataMap.dataEstate['2006'] },
  320. { data: dataMap.dataPI['2006'] },
  321. { data: dataMap.dataSI['2006'] },
  322. { data: dataMap.dataTI['2006'] },
  323. {
  324. data: [
  325. { name: '第一产业', value: dataMap.dataPI['2006sum'] },
  326. { name: '第二产业', value: dataMap.dataSI['2006sum'] },
  327. { name: '第三产业', value: dataMap.dataTI['2006sum'] }
  328. ]
  329. }
  330. ]
  331. },
  332. {
  333. title: { text: '2007全国宏观经济指标' },
  334. series: [
  335. { data: dataMap.dataGDP['2007'] },
  336. { data: dataMap.dataFinancial['2007'] },
  337. { data: dataMap.dataEstate['2007'] },
  338. { data: dataMap.dataPI['2007'] },
  339. { data: dataMap.dataSI['2007'] },
  340. { data: dataMap.dataTI['2007'] },
  341. {
  342. data: [
  343. { name: '第一产业', value: dataMap.dataPI['2007sum'] },
  344. { name: '第二产业', value: dataMap.dataSI['2007sum'] },
  345. { name: '第三产业', value: dataMap.dataTI['2007sum'] }
  346. ]
  347. }
  348. ]
  349. },
  350. {
  351. title: { text: '2008全国宏观经济指标' },
  352. series: [
  353. { data: dataMap.dataGDP['2008'] },
  354. { data: dataMap.dataFinancial['2008'] },
  355. { data: dataMap.dataEstate['2008'] },
  356. { data: dataMap.dataPI['2008'] },
  357. { data: dataMap.dataSI['2008'] },
  358. { data: dataMap.dataTI['2008'] },
  359. {
  360. data: [
  361. { name: '第一产业', value: dataMap.dataPI['2008sum'] },
  362. { name: '第二产业', value: dataMap.dataSI['2008sum'] },
  363. { name: '第三产业', value: dataMap.dataTI['2008sum'] }
  364. ]
  365. }
  366. ]
  367. },
  368. {
  369. title: { text: '2009全国宏观经济指标' },
  370. series: [
  371. { data: dataMap.dataGDP['2009'] },
  372. { data: dataMap.dataFinancial['2009'] },
  373. { data: dataMap.dataEstate['2009'] },
  374. { data: dataMap.dataPI['2009'] },
  375. { data: dataMap.dataSI['2009'] },
  376. { data: dataMap.dataTI['2009'] },
  377. {
  378. data: [
  379. { name: '第一产业', value: dataMap.dataPI['2009sum'] },
  380. { name: '第二产业', value: dataMap.dataSI['2009sum'] },
  381. { name: '第三产业', value: dataMap.dataTI['2009sum'] }
  382. ]
  383. }
  384. ]
  385. },
  386. {
  387. title: { text: '2010全国宏观经济指标' },
  388. series: [
  389. { data: dataMap.dataGDP['2010'] },
  390. { data: dataMap.dataFinancial['2010'] },
  391. { data: dataMap.dataEstate['2010'] },
  392. { data: dataMap.dataPI['2010'] },
  393. { data: dataMap.dataSI['2010'] },
  394. { data: dataMap.dataTI['2010'] },
  395. {
  396. data: [
  397. { name: '第一产业', value: dataMap.dataPI['2010sum'] },
  398. { name: '第二产业', value: dataMap.dataSI['2010sum'] },
  399. { name: '第三产业', value: dataMap.dataTI['2010sum'] }
  400. ]
  401. }
  402. ]
  403. },
  404. {
  405. title: { text: '2011全国宏观经济指标' },
  406. series: [
  407. { data: dataMap.dataGDP['2011'] },
  408. { data: dataMap.dataFinancial['2011'] },
  409. { data: dataMap.dataEstate['2011'] },
  410. { data: dataMap.dataPI['2011'] },
  411. { data: dataMap.dataSI['2011'] },
  412. { data: dataMap.dataTI['2011'] },
  413. {
  414. data: [
  415. { name: '第一产业', value: dataMap.dataPI['2011sum'] },
  416. { name: '第二产业', value: dataMap.dataSI['2011sum'] },
  417. { name: '第三产业', value: dataMap.dataTI['2011sum'] }
  418. ]
  419. }
  420. ]
  421. }
  422. ]
  423. })
  424. }
  425. }
  426. }
  427. </script>